Copied to
clipboard

G = C4xC32:2C8order 288 = 25·32

Direct product of C4 and C32:2C8

direct product, metabelian, soluble, monomial, A-group

Aliases: C4xC32:2C8, (C3xC12):3C8, C32:3(C4xC8), (C6xC12).4C4, C3:Dic3:6C8, C62.3(C2xC4), (C3xC6).3C42, C2.2(C4xC32:C4), (C3xC6).24(C2xC8), C2.2(C2xC32:2C8), C2.2(C3:S3:3C8), C22.8(C2xC32:C4), (C2xC4).10(C32:C4), C3:Dic3.27(C2xC4), (C2xC3:Dic3).13C4, (C4xC3:Dic3).14C2, (C2xC32:2C8).11C2, (C2xC3:Dic3).107C22, SmallGroup(288,423)

Series: Derived Chief Lower central Upper central

C1C32 — C4xC32:2C8
C1C32C3xC6C3:Dic3C2xC3:Dic3C2xC32:2C8 — C4xC32:2C8
C32 — C4xC32:2C8
C1C2xC4

Generators and relations for C4xC32:2C8
 G = < a,b,c,d | a4=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

Subgroups: 272 in 74 conjugacy classes, 30 normal (16 characteristic)
C1, C2, C3, C4, C4, C22, C6, C8, C2xC4, C2xC4, C32, Dic3, C12, C2xC6, C42, C2xC8, C3xC6, C2xDic3, C2xC12, C4xC8, C3:Dic3, C3xC12, C62, C4xDic3, C32:2C8, C2xC3:Dic3, C6xC12, C4xC3:Dic3, C2xC32:2C8, C4xC32:2C8
Quotients: C1, C2, C4, C22, C8, C2xC4, C42, C2xC8, C4xC8, C32:C4, C32:2C8, C2xC32:C4, C3:S3:3C8, C4xC32:C4, C2xC32:2C8, C4xC32:2C8

Smallest permutation representation of C4xC32:2C8
On 96 points
Generators in S96
(1 77 47 15)(2 78 48 16)(3 79 41 9)(4 80 42 10)(5 73 43 11)(6 74 44 12)(7 75 45 13)(8 76 46 14)(17 56 88 27)(18 49 81 28)(19 50 82 29)(20 51 83 30)(21 52 84 31)(22 53 85 32)(23 54 86 25)(24 55 87 26)(33 69 57 89)(34 70 58 90)(35 71 59 91)(36 72 60 92)(37 65 61 93)(38 66 62 94)(39 67 63 95)(40 68 64 96)
(2 23 68)(4 70 17)(6 19 72)(8 66 21)(10 34 27)(12 29 36)(14 38 31)(16 25 40)(42 90 88)(44 82 92)(46 94 84)(48 86 96)(50 60 74)(52 76 62)(54 64 78)(56 80 58)
(1 22 67)(2 23 68)(3 69 24)(4 70 17)(5 18 71)(6 19 72)(7 65 20)(8 66 21)(9 33 26)(10 34 27)(11 28 35)(12 29 36)(13 37 30)(14 38 31)(15 32 39)(16 25 40)(41 89 87)(42 90 88)(43 81 91)(44 82 92)(45 93 83)(46 94 84)(47 85 95)(48 86 96)(49 59 73)(50 60 74)(51 75 61)(52 76 62)(53 63 77)(54 64 78)(55 79 57)(56 80 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,77,47,15)(2,78,48,16)(3,79,41,9)(4,80,42,10)(5,73,43,11)(6,74,44,12)(7,75,45,13)(8,76,46,14)(17,56,88,27)(18,49,81,28)(19,50,82,29)(20,51,83,30)(21,52,84,31)(22,53,85,32)(23,54,86,25)(24,55,87,26)(33,69,57,89)(34,70,58,90)(35,71,59,91)(36,72,60,92)(37,65,61,93)(38,66,62,94)(39,67,63,95)(40,68,64,96), (2,23,68)(4,70,17)(6,19,72)(8,66,21)(10,34,27)(12,29,36)(14,38,31)(16,25,40)(42,90,88)(44,82,92)(46,94,84)(48,86,96)(50,60,74)(52,76,62)(54,64,78)(56,80,58), (1,22,67)(2,23,68)(3,69,24)(4,70,17)(5,18,71)(6,19,72)(7,65,20)(8,66,21)(9,33,26)(10,34,27)(11,28,35)(12,29,36)(13,37,30)(14,38,31)(15,32,39)(16,25,40)(41,89,87)(42,90,88)(43,81,91)(44,82,92)(45,93,83)(46,94,84)(47,85,95)(48,86,96)(49,59,73)(50,60,74)(51,75,61)(52,76,62)(53,63,77)(54,64,78)(55,79,57)(56,80,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,77,47,15)(2,78,48,16)(3,79,41,9)(4,80,42,10)(5,73,43,11)(6,74,44,12)(7,75,45,13)(8,76,46,14)(17,56,88,27)(18,49,81,28)(19,50,82,29)(20,51,83,30)(21,52,84,31)(22,53,85,32)(23,54,86,25)(24,55,87,26)(33,69,57,89)(34,70,58,90)(35,71,59,91)(36,72,60,92)(37,65,61,93)(38,66,62,94)(39,67,63,95)(40,68,64,96), (2,23,68)(4,70,17)(6,19,72)(8,66,21)(10,34,27)(12,29,36)(14,38,31)(16,25,40)(42,90,88)(44,82,92)(46,94,84)(48,86,96)(50,60,74)(52,76,62)(54,64,78)(56,80,58), (1,22,67)(2,23,68)(3,69,24)(4,70,17)(5,18,71)(6,19,72)(7,65,20)(8,66,21)(9,33,26)(10,34,27)(11,28,35)(12,29,36)(13,37,30)(14,38,31)(15,32,39)(16,25,40)(41,89,87)(42,90,88)(43,81,91)(44,82,92)(45,93,83)(46,94,84)(47,85,95)(48,86,96)(49,59,73)(50,60,74)(51,75,61)(52,76,62)(53,63,77)(54,64,78)(55,79,57)(56,80,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,77,47,15),(2,78,48,16),(3,79,41,9),(4,80,42,10),(5,73,43,11),(6,74,44,12),(7,75,45,13),(8,76,46,14),(17,56,88,27),(18,49,81,28),(19,50,82,29),(20,51,83,30),(21,52,84,31),(22,53,85,32),(23,54,86,25),(24,55,87,26),(33,69,57,89),(34,70,58,90),(35,71,59,91),(36,72,60,92),(37,65,61,93),(38,66,62,94),(39,67,63,95),(40,68,64,96)], [(2,23,68),(4,70,17),(6,19,72),(8,66,21),(10,34,27),(12,29,36),(14,38,31),(16,25,40),(42,90,88),(44,82,92),(46,94,84),(48,86,96),(50,60,74),(52,76,62),(54,64,78),(56,80,58)], [(1,22,67),(2,23,68),(3,69,24),(4,70,17),(5,18,71),(6,19,72),(7,65,20),(8,66,21),(9,33,26),(10,34,27),(11,28,35),(12,29,36),(13,37,30),(14,38,31),(15,32,39),(16,25,40),(41,89,87),(42,90,88),(43,81,91),(44,82,92),(45,93,83),(46,94,84),(47,85,95),(48,86,96),(49,59,73),(50,60,74),(51,75,61),(52,76,62),(53,63,77),(54,64,78),(55,79,57),(56,80,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

48 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E···4L6A···6F8A···8P12A···12H
order12223344444···46···68···812···12
size11114411119···94···49···94···4

48 irreducible representations

dim1111111144444
type++++-+
imageC1C2C2C4C4C4C8C8C32:C4C32:2C8C2xC32:C4C3:S3:3C8C4xC32:C4
kernelC4xC32:2C8C4xC3:Dic3C2xC32:2C8C32:2C8C2xC3:Dic3C6xC12C3:Dic3C3xC12C2xC4C4C22C2C2
# reps1128228824244

Matrix representation of C4xC32:2C8 in GL5(F73)

460000
027000
002700
000270
000027
,
10000
01000
00100
00001
0007272
,
10000
0727200
01000
00001
0007272
,
630000
00010
00001
033100
0287000

G:=sub<GL(5,GF(73))| [46,0,0,0,0,0,27,0,0,0,0,0,27,0,0,0,0,0,27,0,0,0,0,0,27],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,1,72],[1,0,0,0,0,0,72,1,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,1,72],[63,0,0,0,0,0,0,0,3,28,0,0,0,31,70,0,1,0,0,0,0,0,1,0,0] >;

C4xC32:2C8 in GAP, Magma, Sage, TeX

C_4\times C_3^2\rtimes_2C_8
% in TeX

G:=Group("C4xC3^2:2C8");
// GroupNames label

G:=SmallGroup(288,423);
// by ID

G=gap.SmallGroup(288,423);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,64,100,9413,691,12550,2372]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<